Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention.
نویسندگان
چکیده
Collecting duct (CD)-derived endothelin-1 (ET-1) inhibits renal Na reabsorption and its deficiency increases blood pressure (BP). The role of CD endothelin B (ETB) receptors in mediating these effects is unknown. CD-specific knockout of the ETB receptor was achieved using an aquaporin-2 promoter-Cre recombinase transgene and the loxP-flanked ETB receptor gene (CD ETB KO). Systolic BP in mice with CD-specific knockout of the ETB receptor, ETA receptor (CD ETA KO) and ET-1 (CD ET-1 KO), and their respective controls were compared during normal- and high-salt diet. On a normal-sodium diet, CD ETB KO mice had elevated BP, which increased further during high salt feeding. However, the degree of hypertension in CD ETB KO mice and the further increase in BP during salt feeding were lower than that of CD ET-1 KO mice, whereas CD ETA KO mice were normotensive. CD ETB KO mice had impaired sodium excretion following acute sodium loading. Aldosterone and plasma renin activity were decreased in CD ETB KO mice on normal- and high-sodium diets, while plasma and urinary ET-1 levels did not differ from controls. In conclusion, the CD ETB receptor partially mediates the antihypertensive and natriuretic effects of ET-1. CD ETA and ETB receptors do not fully account for the antihypertensive and natriuretic effects of CD-derived ET-1, suggesting paracrine effects of this peptide.
منابع مشابه
Explorer Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention
متن کامل
Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention.
The collecting duct (CD) endothelin (ET) system regulates blood pressure (BP) and Na excretion. CD-specific knockout (KO) of ET-1 causes hypertension, CD-specific KO of the ETA receptor does not alter BP, while CD-specific KO of the ETB receptor increases BP to a lesser extent than CD ET-1 KO. These findings suggest a paracrine role for CD-derived ET-1; however, they do not exclude compensation...
متن کاملCollecting duct-specific endothelin B receptor knockout increases ENaC activity.
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophys...
متن کاملPhysiological actions of renal collecting duct endothelin.
THE CONTRIBUTION OF ENDOTHELIN to regulation of renal function under normal physiological conditions is unclear. Many cells in the kidney produce endothelin (9). Endothelin has been reported to have effects that both promote (2, 3, 5–7, 12–14, 16, 18) and reduce (2, 8, 13, 15) urinary sodium excretion and urinary volume. This may be due to the fact that endothelin exerts its effects via two rec...
متن کاملCollecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention.
In vitro studies suggest that collecting duct-derived (CD-derived) endothelin-1 (ET-1) can regulate renal Na reabsorption; however, the physiologic role of CD-derived ET-1 is unknown. Consequently, the physiologic effect of selective disruption of the ET-1 gene in the CD of mice was determined. Mice heterozygous for aquaporin2 promoter Cre recombinase and homozygous for loxP-flanked exon 2 of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 291 6 شماره
صفحات -
تاریخ انتشار 2006